
Exploration of Compiled Agents in Multi-Agent Taxi

Noah Carver ncarver1@umbc.edu

1. Introduction

Multi agent problems usually call for complicated
agent-world structures that suffer from clunky over-
head and poor explainability. The intent behind this
project is to explore the feasibility of an alternative to
distributed multi-agent reinforcement learning.

1.1. Agent Based Reinforcement Learning

Agent based Reinforcement learning is based off of the
interaction between two concepts:

• World The world receives actions from the agent
and returns a representation of the modified state
of the world as well as the reward the agent re-
ceives and whether or not the agent has completed
its task.

• Agent The agent takes in the state of the world
and chooses an action to send to the world.
It learns this choice from previous State-action-
reward triplets that it has received.

Figure 1. World-Agent Interaction Visualization

Some vocabulary pertaining to Agent Based Reinforce-
ment Learning:

• Policy: The learned set of rules that the Agent
uses to make its decisions.

• Epoch: The period of time in which an action is
taken.

• Episode: Period of time in training that is brack-
eted by resetting the domain. It ends either when
the problem is solved or at a pre-defined maxi-
mum number of epochs

1.2. Markov Decision Process

The Markov decision process (MDP) is simply a way
to codify this interaction. It is written as the 5-tuple:

{S,A, T (s, a, s‘), R(s, a, s‘), E}

where S denotes the State space, or the set of all pos-
sible states that the world can be in, A denotes the
set of actions that an agent can take, T (s, a, s‘) is the
probability of reaching state s‘ ∈ S by taking action
a ∈ A at state s ∈ S, R(s, a, s‘) is the reward received
in that case and E is the set of states in which the
agent has completed its task.

MDPs have a few interesting properties:

• Markov Property The Markov Property asserts
that the future is independent of the past given
the present. This means that future states and
rewards are only based on the current state and
whatever actions are taken in the future.

• Fully Observable This property is somewhat de-
rived in the Markov Property. For a domain to
be fully observable worlds have states that do not
hide information from the agent.

• Discrete time The Discrete time property as-
serts that all actions take the same time to com-
plete (all epochs are of equal length).

There are MDP Variants that do not have these prop-
erties (Continuous Time MDPs, Partially Observable
MDPs), but those are not relevant here.

1.3. Multiple Agents

The most noticeable difference when transitioning
from single to multi-agent reinforcement learning is
that, in the viewpoint of each agent, the result of it’s
action at a state does not entirely determine the re-
sulting state. The resulting state is also dependant on
the other agent’s action. This directly contradicts the
Markov Property, meaning that no true multi agent
structure can be a Markov Decision Process.
This co-dependence extends to each agent’s optimal
policy, meaning that the optimal policy of one agent
changes if the policy of the other agent changes.



Submission and Formatting Instructions for ICML 2012

Figure 2. Multi Agent Structure Visualization

1.4. Q-Learning

Q-Learning is a simple and common reinforcement
learning algorithm that functions by assigning a value
to each state-action pair describing the discounted ex-
pected future reward of taking that action at that
state. This Q value can be learned iteratively by using
the following rule:

Qs,a := (1−α)∗Qs,a+α(rs,a+γ∗maxa(Q(s′, a))) (1)

Policies can be generated using:

π(s) = argmaxa(Q(s, a)) (2)

Over time, Q will converge to an optimal Q* and π
will converge to an optimal π∗

2. Problem Definition

2.1. Classic Taxi

The Taxi environment describes a ’taxi’ agent that
moves in cardinal directions on a grid. The grid also
contains a number of ’locations’ and ’passengers’. The
passengers exist only at locations and in the taxi, and
each has a specific location that is their destination.
The simulation ends when all passengers are delivered
to their desired locations.
In this case, the state space is composed of the
location of each passenger and the coordinates of the
taxi. Additionally, the action space is composed of
moving the agent in each of the cardinal directions
and picking up and dropping off a passenger.

Figure 3. Taxi Domain Visualization

In this example, R, Y, B, and G are locations, the
purple circle is a passenger and the blue tag is that
passengers destination. The green arrows indicate the
directions the taxi can move and the red X indicates
that the taxi cannot move through walls.
Note: While this image only has one passenger, the
domain used in testing had two.

2.2. Multi-Taxi

The Multi-Taxi Variant of the Taxi environment sim-
ply adds a second taxi. However, this results in a num-
ber of further complications. Aside from having mul-
tiple taxis that must now coordinate which passengers
each are intending to pick up, there is the additional
issue of the taxis attempting to occupy the same space
at the same time.
The state space is largely the same, except that it con-
tains the coordinates of the second taxi. This environ-
ment has two action spaces, as there are 2 agents. Each
of these action spaces are identical to the Single agent
action space.
This means that each agent needs its own policy and
commonly a separate learner for that policy. This
leads to complicated, if nicely parallel, structures in
which multiple, separate learner-agents affect the same
world at the same time.



Submission and Formatting Instructions for ICML 2012

3. Proposed method

The method explored in this project is to compile both
agents into one single-agent markov decision process
that can be solved with a simple reinforcement learn-
ing algorithm like Q-Learning. To do this, the action
space becomes the set product of the action spaces of
each agent.

α = α1 × α2 = {(a1, a2) : a1 ∈ α1, a2 ∈ α2}

Where α refers to an action space and a is an action in
said action space. This makes the action space expo-
nentially larger than the equivalent single agent action
space. This is similar to the concept of a Joint-action
Learner in that actions are learned jointly, as opposed
to each agent learning a separate policy based off of a
model of the other agent or learned probabilities.
Additionally, only one policy needs to be learned,
as each action can be factored into the actions
for both agents. Since there is only one macro-
action, the Markov Property is restored, meaning that
this pseudo-multi-agent structure returns to being a
Markov Decision Process. There is no co-dependence
between policies since only one policy is needed.

3.1. Intuition

Theoretically, a simple Q-Learner should be able to
converge on this domain given an adequate amount
of time. The state space and action space are very
large, making it very time consuming to explore and
to populate Q-values, but it is possible.

4. Experiments

Before running these experiments, tuning was required
in order to reach the results shown here. The Hyper-
parameters reached are as follows:

α = 0.05

γ = 0.7

ε = 0.001

number of episodes = 20000

maximum number of epochs = 5000

(3)

These parameters were used for all tests.

4.1. Epochs per episode

The first experiment is to test the number of epochs
per episode as this will show the agents solving the
domain faster as it learns.

Figure 4.

4.2. Reward per episode

The second Experiment is to view the reward received
by the agents. This shows the number of mistakes (ie:
collisions) that are made as the algorithm learns.

Figure 5.

4.2.1. Episodes with No ’Mistakes‘

There are also data points in figures 4 and 5 that are
purple. These datapoints represent episodes where no
negative reward was received other than -1 each epoch
as a temporal motivator. This means that the agents
never collide and they never attempt to take the pick
up or put down actions when they cannot. Notice how,
as the algorithm learns, the frequency of episodes with
no mistakes increases.

4.2.2. Cut-off Episodes

There are a number of data points in figure 5 that
are colored red. These represent episodes in which



Submission and Formatting Instructions for ICML 2012

the agent never solves the domain. Notice that these
points converge to a line at around -5000. This is due
to the 5000 epoch cut-off. However, the fact that these
converge to around -5000 means that even when the
agents fail to solve the domain, they almost qualify
as having no mistakes. Additionally the amount of
episodes that do not finish decrease as the algorithm
learns.

4.3. Comparison to Single Taxi

It is important to be able to compare this with the
basic single taxi domain. This was done using the ex-
act same Hyper parameters (α,γ, number of episodes,
max epochs per episode)

Figure 6. Epochs per Episode (One Taxi)

Compare figure 6 to figure 4. Note that the Algorithm
converges faster and reaches a much more concentrated
result. Additionally note the lack of the line of data
points at the top, this indicates that the single taxi
has no difficulty solving the domain. In fact the single
agent never failed to solve the domain. In it’s first
iteration it solved the domain in just over 3000 epochs.

Figure 7. Reward per Episode (One Taxi)

Much of the same observations can be made comparing
figure 7 and figure 5. Notice the absence of the red line
of cut-off episodes and the larger quantity of purple
data points with no ’mistakes‘.

4.4. No Epoch Limit

In this experiment, the upper limit to the number
of actions the agents can take in an episode was re-
moved. This means that all episodes will run until the
agents deliver the passengers, regardless of how long
that takes.

Figure 8. Epochs per Episode (Two Taxis, no cut-off)



Submission and Formatting Instructions for ICML 2012

Figure 9. Reward per Episode (Two Taxis, no cut-off)

Initially, these graphs look quite similar to those of
the Single Taxi. However, note that the scale of the
y-axis is much larger than that of any of the previ-
ous figures. Adjusting this scale reveals that removing
the upper bound for epochs did little to improve the
performance of the algorithm. The only relevant dif-
ference is the absence of the lines denoting unfinished
episodes. These data points are still present in figures
8 and 9 but were cut off when the y-axis was adjusted.

Figure 10. Epochs per Episode (Two Taxis, no cut-off,
Cropped)

Figure 11. Reward per Episode (Two Taxis, no cut-off,
Cropped)

5. Conclusions

Foremost of the conclusions to be found here is that, at
least for this particular domain, Multi-Agent Compil-
ing does not present a benefit over a single agent doing
twice the work. Even though the performance ceiling
is higher in the case of multi-agent compiling – each
agent can pick up a passenger and deliver it, halving
the work needed from each agent – it does not reach
that ceiling, much less reach it consistently, especially
when compared to the consistency of the single agent.

References

Claus, Caroline and Boutilier, Craig. The dynamics
of reinforcement learning in cooperative multiagent
systems. AAAI/IAAI, 1998:746–752, 1998.

Ghavamzadeh, Mohammad, Mahadevan, Sridhar, and
Makar, Rajbala. Hierarchical multi-agent reinforce-
ment learning. Autonomous Agents and Multi-Agent
Systems, 13(2):197–229, 2006.

Littman, Michael L, Dean, Thomas L, and Kaelbling,
Leslie Pack. On the complexity of solving markov
decision problems. In Proceedings of the Eleventh
conference on Uncertainty in artificial intelligence,
pp. 394–402. Morgan Kaufmann Publishers Inc.,
1995.

Neto, Gonçalo. From single-agent to multi-agent re-
inforcement learning: Foundational concepts and
methods. 2005.


